Title
Bifunctional DEGS2 has higher hydroxylase activity toward substrates with very-long-chain fatty acids in the production of phytosphingosine ceramides
Authors
Ai Ota, Hiroya Morita, Tatsuro Naganuma, Masatoshi Miyamoto, Keisuke Jojima, Koki Nojiri, Junko Matsuda, Akio Kihara
Institution
Hokkaido University, Sapporo
Country
Japan
Year
2023
Journal
Journal of Biological Chemistry
Abstract
Phytosphingosine (PHS) is a sphingolipid component present mainly in epithelial tissues, including the epidermis and those lining the digestive tract. DEGS2 is a bifunctional enzyme that produces ceramides (CERs) containing PHS (PHS-CERs) via hydroxylation and sphingosine-CERs via desaturation, using dihydrosphingosine-CERs as substrates. Until now, the role of DEGS2 in permeability barrier functioning, its contribution to PHS-CER production, and the mechanism that differentiates between these two activities have been unknown. Here, we analyzed the barrier functioning of the epidermis, esophagus, and anterior stomach of Degs2 KO mice and found that there were no differences between Degs2 KO and WT mice, indicating normal permeability barriers in the KO mice. In the epidermis, esophagus, and anterior stomach of Degs2 KO mice, PHS-CER levels were greatly reduced relative to WT mice, but PHS-CERs were still present. We obtained similar results for DEGS2 KO human keratinocytes. These results indicate that although DEGS2 plays a major role in PHS-CER production, another synthesis pathway exists as well. Next, we examined the fatty acid (FA) composition of PHS-CERs in various mouse tissues and found that PHS-CER species containing very-long-chain FAs (≥C21) were more abundant than those containing long-chain FAs (C11–C20). A cell-based assay system revealed that the desaturase and hydroxylase activities of DEGS2 toward substrates with different FA chain lengths differed and that its hydroxylase activity was higher toward substrates containing very-long-chain FAs. Collectively, our findings contribute to the elucidation of the molecular mechanism of PHS-CER production.
Product use
Keratinocyte culture, epidermal models
Tissue type
Epidermal
Tissue info
Human immortalized keratinocytes (NHEK/SVTERT3-5)
Species
Human

< Back to publications